Welcome to the second assignment of this week! You will learn how to build very deep convolutional networks, using Residual Networks (ResNets). In theory, very deep networks can represent very complex functions; but in practice, they are hard to train. Residual Networks, introduced by He et al., allow you to train much deeper networks than were previously practically feasible.
In this assignment, you will:
preprocess_input(x)
with x=x/255.0
to normalize the input image in the same way that the model's training data was normalized.This assignment will be done in Keras.
Before jumping into the problem, let's run the cell below to load the required packages.
import numpy as np
from keras import layers
from keras.layers import Input, Add, Dense, Activation, ZeroPadding2D, BatchNormalization, Flatten, Conv2D, AveragePooling2D, MaxPooling2D, GlobalMaxPooling2D
from keras.models import Model, load_model
from keras.preprocessing import image
from keras.utils import layer_utils
from keras.utils.data_utils import get_file
from keras.applications.imagenet_utils import preprocess_input
import pydot
from IPython.display import SVG
from keras.utils.vis_utils import model_to_dot
from keras.utils import plot_model
from resnets_utils import *
from keras.initializers import glorot_uniform
import scipy.misc
from matplotlib.pyplot import imshow
%matplotlib inline
import keras.backend as K
K.set_image_data_format('channels_last')
K.set_learning_phase(1)
Using TensorFlow backend.
Last week, you built your first convolutional neural network. In recent years, neural networks have become deeper, with state-of-the-art networks going from just a few layers (e.g., AlexNet) to over a hundred layers.
You are now going to solve this problem by building a Residual Network!
In ResNets, a "shortcut" or a "skip connection" allows the model to skip layers:
The image on the left shows the "main path" through the network. The image on the right adds a shortcut to the main path. By stacking these ResNet blocks on top of each other, you can form a very deep network.
We also saw in lecture that having ResNet blocks with the shortcut also makes it very easy for one of the blocks to learn an identity function. This means that you can stack on additional ResNet blocks with little risk of harming training set performance.
(There is also some evidence that the ease of learning an identity function accounts for ResNets' remarkable performance even more so than skip connections helping with vanishing gradients).
Two main types of blocks are used in a ResNet, depending mainly on whether the input/output dimensions are same or different. You are going to implement both of them: the "identity block" and the "convolutional block."
The identity block is the standard block used in ResNets, and corresponds to the case where the input activation (say $a^{[l]}$) has the same dimension as the output activation (say $a^{[l+2]}$). To flesh out the different steps of what happens in a ResNet's identity block, here is an alternative diagram showing the individual steps:
The upper path is the "shortcut path." The lower path is the "main path." In this diagram, we have also made explicit the CONV2D and ReLU steps in each layer. To speed up training we have also added a BatchNorm step. Don't worry about this being complicated to implement--you'll see that BatchNorm is just one line of code in Keras!
In this exercise, you'll actually implement a slightly more powerful version of this identity block, in which the skip connection "skips over" 3 hidden layers rather than 2 layers. It looks like this:
Here are the individual steps.
First component of main path:
conv_name_base + '2a'
. Use 0 as the seed for the random initialization. bn_name_base + '2a'
.Second component of main path:
conv_name_base + '2b'
. Use 0 as the seed for the random initialization. bn_name_base + '2b'
.Third component of main path:
conv_name_base + '2c'
. Use 0 as the seed for the random initialization. bn_name_base + '2c'
. Final step:
X_shortcut
and the output from the 3rd layer X
are added together.Add()([var1,var2])
Exercise: Implement the ResNet identity block. We have implemented the first component of the main path. Please read this carefully to make sure you understand what it is doing. You should implement the rest.
Activation('relu')(X)
# GRADED FUNCTION: identity_block
def identity_block(X, f, filters, stage, block):
"""
Implementation of the identity block as defined in Figure 4
Arguments:
X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev)
f -- integer, specifying the shape of the middle CONV's window for the main path
filters -- python list of integers, defining the number of filters in the CONV layers of the main path
stage -- integer, used to name the layers, depending on their position in the network
block -- string/character, used to name the layers, depending on their position in the network
Returns:
X -- output of the identity block, tensor of shape (n_H, n_W, n_C)
"""
# defining name basis
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
# Retrieve Filters
F1, F2, F3 = filters
# Save the input value. You'll need this later to add back to the main path.
X_shortcut = X
# First component of main path
X = Conv2D(filters = F1, kernel_size = (1, 1), strides = (1,1), padding = 'valid', name = conv_name_base + '2a', kernel_initializer = glorot_uniform(seed=0))(X)
X = BatchNormalization(axis = 3, name = bn_name_base + '2a')(X)
X = Activation('relu')(X)
### START CODE HERE ###
# Second component of main path (≈3 lines)
X = Conv2D(filters = F2, kernel_size = (f, f), strides = (1,1), padding = 'same', name = conv_name_base + '2b', kernel_initializer = glorot_uniform(seed=0))(X)
X = BatchNormalization(axis = 3, name = bn_name_base + '2b')(X)
X = Activation('relu')(X)
# Third component of main path (≈2 lines)
X = Conv2D(filters = F3, kernel_size = (1, 1), strides = (1,1), padding = 'valid', name = conv_name_base + '2c', kernel_initializer = glorot_uniform(seed=0))(X)
X = BatchNormalization(axis = 3, name = bn_name_base + '2c')(X)
# Final step: Add shortcut value to main path, and pass it through a RELU activation (≈2 lines)
X = Add()([X, X_shortcut])
X = Activation('relu')(X)
### END CODE HERE ###
return X
tf.reset_default_graph()
with tf.Session() as test:
np.random.seed(1)
A_prev = tf.placeholder("float", [3, 4, 4, 6])
X = np.random.randn(3, 4, 4, 6)
A = identity_block(A_prev, f = 2, filters = [2, 4, 6], stage = 1, block = 'a')
test.run(tf.global_variables_initializer())
out = test.run([A], feed_dict={A_prev: X, K.learning_phase(): 0})
print("out = " + str(out[0][1][1][0]))
out = [ 0.94822985 0. 1.16101444 2.747859 0. 1.36677003]
Expected Output:
**out** | [ 0.94822985 0. 1.16101444 2.747859 0. 1.36677003] |
The ResNet "convolutional block" is the second block type. You can use this type of block when the input and output dimensions don't match up. The difference with the identity block is that there is a CONV2D layer in the shortcut path:
The details of the convolutional block are as follows.
First component of main path:
conv_name_base + '2a'
. Use 0 as the glorot_uniform
seed.bn_name_base + '2a'
.Second component of main path:
conv_name_base + '2b'
. Use 0 as the glorot_uniform
seed.bn_name_base + '2b'
.Third component of main path:
conv_name_base + '2c'
. Use 0 as the glorot_uniform
seed.bn_name_base + '2c'
. Note that there is no ReLU activation function in this component. Shortcut path:
conv_name_base + '1'
. Use 0 as the glorot_uniform
seed.bn_name_base + '1'
. Final step:
Exercise: Implement the convolutional block. We have implemented the first component of the main path; you should implement the rest. As before, always use 0 as the seed for the random initialization, to ensure consistency with our grader.
Activation('relu')(X)
# GRADED FUNCTION: convolutional_block
def convolutional_block(X, f, filters, stage, block, s = 2):
"""
Implementation of the convolutional block as defined in Figure 4
Arguments:
X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev)
f -- integer, specifying the shape of the middle CONV's window for the main path
filters -- python list of integers, defining the number of filters in the CONV layers of the main path
stage -- integer, used to name the layers, depending on their position in the network
block -- string/character, used to name the layers, depending on their position in the network
s -- Integer, specifying the stride to be used
Returns:
X -- output of the convolutional block, tensor of shape (n_H, n_W, n_C)
"""
# defining name basis
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
# Retrieve Filters
F1, F2, F3 = filters
# Save the input value
X_shortcut = X
##### MAIN PATH #####
# First component of main path
X = Conv2D(filters = F1, kernel_size = (1, 1), strides = (s,s), padding = 'valid', name = conv_name_base + '2a', kernel_initializer = glorot_uniform(seed=0))(X)
X = BatchNormalization(axis = 3, name = bn_name_base + '2a')(X)
X = Activation('relu')(X)
### START CODE HERE ###
# Second component of main path (≈3 lines)
X = Conv2D(filters = F2, kernel_size = (f, f), strides = (1,1), padding = 'same', name = conv_name_base + '2b', kernel_initializer = glorot_uniform(seed=0))(X)
X = BatchNormalization(axis = 3, name = bn_name_base + '2b')(X)
X = Activation('relu')(X)
# Third component of main path (≈2 lines)
X = Conv2D(filters = F3, kernel_size = (1, 1), strides = (1,1), padding = 'valid', name = conv_name_base + '2c', kernel_initializer = glorot_uniform(seed=0))(X)
X = BatchNormalization(axis = 3, name = bn_name_base + '2c')(X)
##### SHORTCUT PATH #### (≈2 lines)
X_shortcut = Conv2D(filters = F3, kernel_size = (1, 1), strides = (s,s), padding = 'valid', name = conv_name_base + '1', kernel_initializer = glorot_uniform(seed=0))(X_shortcut)
X_shortcut = BatchNormalization(axis = 3, name = bn_name_base + '1')(X_shortcut)
# Final step: Add shortcut value to main path, and pass it through a RELU activation (≈2 lines)
X = Add()([X, X_shortcut])
X = Activation('relu')(X)
### END CODE HERE ###
return X
tf.reset_default_graph()
with tf.Session() as test:
np.random.seed(1)
A_prev = tf.placeholder("float", [3, 4, 4, 6])
X = np.random.randn(3, 4, 4, 6)
A = convolutional_block(A_prev, f = 2, filters = [2, 4, 6], stage = 1, block = 'a')
test.run(tf.global_variables_initializer())
out = test.run([A], feed_dict={A_prev: X, K.learning_phase(): 0})
print("out = " + str(out[0][1][1][0]))
out = [ 0.09018463 1.23489773 0.46822017 0.0367176 0. 0.65516603]
Expected Output:
**out** | [ 0.09018463 1.23489773 0.46822017 0.0367176 0. 0.65516603] |
You now have the necessary blocks to build a very deep ResNet. The following figure describes in detail the architecture of this neural network. "ID BLOCK" in the diagram stands for "Identity block," and "ID BLOCK x3" means you should stack 3 identity blocks together.
The details of this ResNet-50 model are:
'fc' + str(classes)
.Exercise: Implement the ResNet with 50 layers described in the figure above. We have implemented Stages 1 and 2. Please implement the rest. (The syntax for implementing Stages 3-5 should be quite similar to that of Stage 2.) Make sure you follow the naming convention in the text above.
You'll need to use this function:
Here are some other functions we used in the code below:
# GRADED FUNCTION: ResNet50
def ResNet50(input_shape = (64, 64, 3), classes = 6):
"""
Implementation of the popular ResNet50 the following architecture:
CONV2D -> BATCHNORM -> RELU -> MAXPOOL -> CONVBLOCK -> IDBLOCK*2 -> CONVBLOCK -> IDBLOCK*3
-> CONVBLOCK -> IDBLOCK*5 -> CONVBLOCK -> IDBLOCK*2 -> AVGPOOL -> TOPLAYER
Arguments:
input_shape -- shape of the images of the dataset
classes -- integer, number of classes
Returns:
model -- a Model() instance in Keras
"""
# Define the input as a tensor with shape input_shape
X_input = Input(input_shape)
# Zero-Padding
X = ZeroPadding2D((3, 3))(X_input)
# Stage 1
X = Conv2D(64, (7, 7), strides = (2, 2), name = 'conv1', kernel_initializer = glorot_uniform(seed=0))(X)
X = BatchNormalization(axis = 3, name = 'bn_conv1')(X)
X = Activation('relu')(X)
X = MaxPooling2D((3, 3), strides=(2, 2))(X)
# Stage 2
X = convolutional_block(X, f = 3, filters = [64, 64, 256], stage = 2, block='a', s = 1)
X = identity_block(X, 3, [64, 64, 256], stage=2, block='b')
X = identity_block(X, 3, [64, 64, 256], stage=2, block='c')
### START CODE HERE ###
# Stage 3 (≈4 lines)
X = convolutional_block(X, f = 3, filters = [128,128,512], stage = 3, block='a', s = 2)
X = identity_block(X, 3, [128,128,512], stage=3, block='b')
X = identity_block(X, 3, [128,128,512], stage=3, block='c')
X = identity_block(X, 3, [128,128,512], stage=3, block='d')
# Stage 4 (≈6 lines)
X = convolutional_block(X, f = 3, filters = [256, 256, 1024], stage = 4, block='a', s = 2)
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='b')
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='c')
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='d')
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='e')
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='f')
# Stage 5 (≈3 lines)
X = convolutional_block(X, f = 3, filters = [512, 512, 2048], stage = 5, block='a', s = 2)
X = identity_block(X, 3, [512, 512, 2048], stage=5, block='b')
X = identity_block(X, 3, [512, 512, 2048], stage=5, block='c')
# AVGPOOL (≈1 line). Use "X = AveragePooling2D(...)(X)"
X = AveragePooling2D(pool_size=(2, 2), name = 'avg_pool')(X)
### END CODE HERE ###
# output layer
X = Flatten()(X)
X = Dense(classes, activation='softmax', name='fc' + str(classes), kernel_initializer = glorot_uniform(seed=0))(X)
# Create model
model = Model(inputs = X_input, outputs = X, name='ResNet50')
return model
Run the following code to build the model's graph. If your implementation is not correct you will know it by checking your accuracy when running model.fit(...)
below.
model = ResNet50(input_shape = (64, 64, 3), classes = 6)
As seen in the Keras Tutorial Notebook, prior training a model, you need to configure the learning process by compiling the model.
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
The model is now ready to be trained. The only thing you need is a dataset.
Let's load the SIGNS Dataset.
X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset()
# Normalize image vectors
X_train = X_train_orig/255.
X_test = X_test_orig/255.
# Convert training and test labels to one hot matrices
Y_train = convert_to_one_hot(Y_train_orig, 6).T
Y_test = convert_to_one_hot(Y_test_orig, 6).T
print ("number of training examples = " + str(X_train.shape[0]))
print ("number of test examples = " + str(X_test.shape[0]))
print ("X_train shape: " + str(X_train.shape))
print ("Y_train shape: " + str(Y_train.shape))
print ("X_test shape: " + str(X_test.shape))
print ("Y_test shape: " + str(Y_test.shape))
number of training examples = 1080 number of test examples = 120 X_train shape: (1080, 64, 64, 3) Y_train shape: (1080, 6) X_test shape: (120, 64, 64, 3) Y_test shape: (120, 6)
Run the following cell to train your model on 2 epochs with a batch size of 32. On a CPU it should take you around 5min per epoch.
model.fit(X_train, Y_train, epochs = 2, batch_size = 32)
Epoch 1/2 1080/1080 [==============================] - 254s - loss: 2.5225 - acc: 0.3593 Epoch 2/2 1080/1080 [==============================] - 253s - loss: 1.8484 - acc: 0.5713
<keras.callbacks.History at 0x7f5bf4a3da90>
Expected Output:
** Epoch 1/2** | loss: between 1 and 5, acc: between 0.2 and 0.5, although your results can be different from ours. |
** Epoch 2/2** | loss: between 1 and 5, acc: between 0.2 and 0.5, you should see your loss decreasing and the accuracy increasing. |
Let's see how this model (trained on only two epochs) performs on the test set.
preds = model.evaluate(X_test, Y_test)
print ("Loss = " + str(preds[0]))
print ("Test Accuracy = " + str(preds[1]))
120/120 [==============================] - 9s Loss = 2.25907681783 Test Accuracy = 0.166666668653
Expected Output:
**Test Accuracy** | between 0.16 and 0.25 |
For the purpose of this assignment, we've asked you to train the model for just two epochs. You can see that it achieves poor performances. Please go ahead and submit your assignment; to check correctness, the online grader will run your code only for a small number of epochs as well.
After you have finished this official (graded) part of this assignment, you can also optionally train the ResNet for more iterations, if you want. We get a lot better performance when we train for ~20 epochs, but this will take more than an hour when training on a CPU.
Using a GPU, we've trained our own ResNet50 model's weights on the SIGNS dataset. You can load and run our trained model on the test set in the cells below. It may take ≈1min to load the model.
model = load_model('ResNet50.h5')
preds = model.evaluate(X_test, Y_test)
print ("Loss = " + str(preds[0]))
print ("Test Accuracy = " + str(preds[1]))
120/120 [==============================] - 9s Loss = 0.530178320408 Test Accuracy = 0.866666662693
ResNet50 is a powerful model for image classification when it is trained for an adequate number of iterations. We hope you can use what you've learnt and apply it to your own classification problem to perform state-of-the-art accuracy.
Congratulations on finishing this assignment! You've now implemented a state-of-the-art image classification system!
If you wish, you can also take a picture of your own hand and see the output of the model. To do this:
1. Click on "File" in the upper bar of this notebook, then click "Open" to go on your Coursera Hub.
2. Add your image to this Jupyter Notebook's directory, in the "images" folder
3. Write your image's name in the following code
4. Run the code and check if the algorithm is right!
img_path = 'images/my_image.jpg'
img = image.load_img(img_path, target_size=(64, 64))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = x/255.0
print('Input image shape:', x.shape)
my_image = scipy.misc.imread(img_path)
imshow(my_image)
print("class prediction vector [p(0), p(1), p(2), p(3), p(4), p(5)] = ")
print(model.predict(x))
Input image shape: (1, 64, 64, 3) class prediction vector [p(0), p(1), p(2), p(3), p(4), p(5)] = [[ 3.41876671e-06 2.77412561e-04 9.99522924e-01 1.98842812e-07 1.95619068e-04 4.11686671e-07]]
You can also print a summary of your model by running the following code.
model.summary()
____________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ==================================================================================================== input_1 (InputLayer) (None, 64, 64, 3) 0 ____________________________________________________________________________________________________ zero_padding2d_1 (ZeroPadding2D) (None, 70, 70, 3) 0 input_1[0][0] ____________________________________________________________________________________________________ conv1 (Conv2D) (None, 32, 32, 64) 9472 zero_padding2d_1[0][0] ____________________________________________________________________________________________________ bn_conv1 (BatchNormalization) (None, 32, 32, 64) 256 conv1[0][0] ____________________________________________________________________________________________________ activation_4 (Activation) (None, 32, 32, 64) 0 bn_conv1[0][0] ____________________________________________________________________________________________________ max_pooling2d_1 (MaxPooling2D) (None, 15, 15, 64) 0 activation_4[0][0] ____________________________________________________________________________________________________ res2a_branch2a (Conv2D) (None, 15, 15, 64) 4160 max_pooling2d_1[0][0] ____________________________________________________________________________________________________ bn2a_branch2a (BatchNormalizatio (None, 15, 15, 64) 256 res2a_branch2a[0][0] ____________________________________________________________________________________________________ activation_5 (Activation) (None, 15, 15, 64) 0 bn2a_branch2a[0][0] ____________________________________________________________________________________________________ res2a_branch2b (Conv2D) (None, 15, 15, 64) 36928 activation_5[0][0] ____________________________________________________________________________________________________ bn2a_branch2b (BatchNormalizatio (None, 15, 15, 64) 256 res2a_branch2b[0][0] ____________________________________________________________________________________________________ activation_6 (Activation) (None, 15, 15, 64) 0 bn2a_branch2b[0][0] ____________________________________________________________________________________________________ res2a_branch2c (Conv2D) (None, 15, 15, 256) 16640 activation_6[0][0] ____________________________________________________________________________________________________ res2a_branch1 (Conv2D) (None, 15, 15, 256) 16640 max_pooling2d_1[0][0] ____________________________________________________________________________________________________ bn2a_branch2c (BatchNormalizatio (None, 15, 15, 256) 1024 res2a_branch2c[0][0] ____________________________________________________________________________________________________ bn2a_branch1 (BatchNormalization (None, 15, 15, 256) 1024 res2a_branch1[0][0] ____________________________________________________________________________________________________ add_2 (Add) (None, 15, 15, 256) 0 bn2a_branch2c[0][0] bn2a_branch1[0][0] ____________________________________________________________________________________________________ activation_7 (Activation) (None, 15, 15, 256) 0 add_2[0][0] ____________________________________________________________________________________________________ res2b_branch2a (Conv2D) (None, 15, 15, 64) 16448 activation_7[0][0] ____________________________________________________________________________________________________ bn2b_branch2a (BatchNormalizatio (None, 15, 15, 64) 256 res2b_branch2a[0][0] ____________________________________________________________________________________________________ activation_8 (Activation) (None, 15, 15, 64) 0 bn2b_branch2a[0][0] ____________________________________________________________________________________________________ res2b_branch2b (Conv2D) (None, 15, 15, 64) 36928 activation_8[0][0] ____________________________________________________________________________________________________ bn2b_branch2b (BatchNormalizatio (None, 15, 15, 64) 256 res2b_branch2b[0][0] ____________________________________________________________________________________________________ activation_9 (Activation) (None, 15, 15, 64) 0 bn2b_branch2b[0][0] ____________________________________________________________________________________________________ res2b_branch2c (Conv2D) (None, 15, 15, 256) 16640 activation_9[0][0] ____________________________________________________________________________________________________ bn2b_branch2c (BatchNormalizatio (None, 15, 15, 256) 1024 res2b_branch2c[0][0] ____________________________________________________________________________________________________ add_3 (Add) (None, 15, 15, 256) 0 bn2b_branch2c[0][0] activation_7[0][0] ____________________________________________________________________________________________________ activation_10 (Activation) (None, 15, 15, 256) 0 add_3[0][0] ____________________________________________________________________________________________________ res2c_branch2a (Conv2D) (None, 15, 15, 64) 16448 activation_10[0][0] ____________________________________________________________________________________________________ bn2c_branch2a (BatchNormalizatio (None, 15, 15, 64) 256 res2c_branch2a[0][0] ____________________________________________________________________________________________________ activation_11 (Activation) (None, 15, 15, 64) 0 bn2c_branch2a[0][0] ____________________________________________________________________________________________________ res2c_branch2b (Conv2D) (None, 15, 15, 64) 36928 activation_11[0][0] ____________________________________________________________________________________________________ bn2c_branch2b (BatchNormalizatio (None, 15, 15, 64) 256 res2c_branch2b[0][0] ____________________________________________________________________________________________________ activation_12 (Activation) (None, 15, 15, 64) 0 bn2c_branch2b[0][0] ____________________________________________________________________________________________________ res2c_branch2c (Conv2D) (None, 15, 15, 256) 16640 activation_12[0][0] ____________________________________________________________________________________________________ bn2c_branch2c (BatchNormalizatio (None, 15, 15, 256) 1024 res2c_branch2c[0][0] ____________________________________________________________________________________________________ add_4 (Add) (None, 15, 15, 256) 0 bn2c_branch2c[0][0] activation_10[0][0] ____________________________________________________________________________________________________ activation_13 (Activation) (None, 15, 15, 256) 0 add_4[0][0] ____________________________________________________________________________________________________ res3a_branch2a (Conv2D) (None, 8, 8, 128) 32896 activation_13[0][0] ____________________________________________________________________________________________________ bn3a_branch2a (BatchNormalizatio (None, 8, 8, 128) 512 res3a_branch2a[0][0] ____________________________________________________________________________________________________ activation_14 (Activation) (None, 8, 8, 128) 0 bn3a_branch2a[0][0] ____________________________________________________________________________________________________ res3a_branch2b (Conv2D) (None, 8, 8, 128) 147584 activation_14[0][0] ____________________________________________________________________________________________________ bn3a_branch2b (BatchNormalizatio (None, 8, 8, 128) 512 res3a_branch2b[0][0] ____________________________________________________________________________________________________ activation_15 (Activation) (None, 8, 8, 128) 0 bn3a_branch2b[0][0] ____________________________________________________________________________________________________ res3a_branch2c (Conv2D) (None, 8, 8, 512) 66048 activation_15[0][0] ____________________________________________________________________________________________________ res3a_branch1 (Conv2D) (None, 8, 8, 512) 131584 activation_13[0][0] ____________________________________________________________________________________________________ bn3a_branch2c (BatchNormalizatio (None, 8, 8, 512) 2048 res3a_branch2c[0][0] ____________________________________________________________________________________________________ bn3a_branch1 (BatchNormalization (None, 8, 8, 512) 2048 res3a_branch1[0][0] ____________________________________________________________________________________________________ add_5 (Add) (None, 8, 8, 512) 0 bn3a_branch2c[0][0] bn3a_branch1[0][0] ____________________________________________________________________________________________________ activation_16 (Activation) (None, 8, 8, 512) 0 add_5[0][0] ____________________________________________________________________________________________________ res3b_branch2a (Conv2D) (None, 8, 8, 128) 65664 activation_16[0][0] ____________________________________________________________________________________________________ bn3b_branch2a (BatchNormalizatio (None, 8, 8, 128) 512 res3b_branch2a[0][0] ____________________________________________________________________________________________________ activation_17 (Activation) (None, 8, 8, 128) 0 bn3b_branch2a[0][0] ____________________________________________________________________________________________________ res3b_branch2b (Conv2D) (None, 8, 8, 128) 147584 activation_17[0][0] ____________________________________________________________________________________________________ bn3b_branch2b (BatchNormalizatio (None, 8, 8, 128) 512 res3b_branch2b[0][0] ____________________________________________________________________________________________________ activation_18 (Activation) (None, 8, 8, 128) 0 bn3b_branch2b[0][0] ____________________________________________________________________________________________________ res3b_branch2c (Conv2D) (None, 8, 8, 512) 66048 activation_18[0][0] ____________________________________________________________________________________________________ bn3b_branch2c (BatchNormalizatio (None, 8, 8, 512) 2048 res3b_branch2c[0][0] ____________________________________________________________________________________________________ add_6 (Add) (None, 8, 8, 512) 0 bn3b_branch2c[0][0] activation_16[0][0] ____________________________________________________________________________________________________ activation_19 (Activation) (None, 8, 8, 512) 0 add_6[0][0] ____________________________________________________________________________________________________ res3c_branch2a (Conv2D) (None, 8, 8, 128) 65664 activation_19[0][0] ____________________________________________________________________________________________________ bn3c_branch2a (BatchNormalizatio (None, 8, 8, 128) 512 res3c_branch2a[0][0] ____________________________________________________________________________________________________ activation_20 (Activation) (None, 8, 8, 128) 0 bn3c_branch2a[0][0] ____________________________________________________________________________________________________ res3c_branch2b (Conv2D) (None, 8, 8, 128) 147584 activation_20[0][0] ____________________________________________________________________________________________________ bn3c_branch2b (BatchNormalizatio (None, 8, 8, 128) 512 res3c_branch2b[0][0] ____________________________________________________________________________________________________ activation_21 (Activation) (None, 8, 8, 128) 0 bn3c_branch2b[0][0] ____________________________________________________________________________________________________ res3c_branch2c (Conv2D) (None, 8, 8, 512) 66048 activation_21[0][0] ____________________________________________________________________________________________________ bn3c_branch2c (BatchNormalizatio (None, 8, 8, 512) 2048 res3c_branch2c[0][0] ____________________________________________________________________________________________________ add_7 (Add) (None, 8, 8, 512) 0 bn3c_branch2c[0][0] activation_19[0][0] ____________________________________________________________________________________________________ activation_22 (Activation) (None, 8, 8, 512) 0 add_7[0][0] ____________________________________________________________________________________________________ res3d_branch2a (Conv2D) (None, 8, 8, 128) 65664 activation_22[0][0] ____________________________________________________________________________________________________ bn3d_branch2a (BatchNormalizatio (None, 8, 8, 128) 512 res3d_branch2a[0][0] ____________________________________________________________________________________________________ activation_23 (Activation) (None, 8, 8, 128) 0 bn3d_branch2a[0][0] ____________________________________________________________________________________________________ res3d_branch2b (Conv2D) (None, 8, 8, 128) 147584 activation_23[0][0] ____________________________________________________________________________________________________ bn3d_branch2b (BatchNormalizatio (None, 8, 8, 128) 512 res3d_branch2b[0][0] ____________________________________________________________________________________________________ activation_24 (Activation) (None, 8, 8, 128) 0 bn3d_branch2b[0][0] ____________________________________________________________________________________________________ res3d_branch2c (Conv2D) (None, 8, 8, 512) 66048 activation_24[0][0] ____________________________________________________________________________________________________ bn3d_branch2c (BatchNormalizatio (None, 8, 8, 512) 2048 res3d_branch2c[0][0] ____________________________________________________________________________________________________ add_8 (Add) (None, 8, 8, 512) 0 bn3d_branch2c[0][0] activation_22[0][0] ____________________________________________________________________________________________________ activation_25 (Activation) (None, 8, 8, 512) 0 add_8[0][0] ____________________________________________________________________________________________________ res4a_branch2a (Conv2D) (None, 4, 4, 256) 131328 activation_25[0][0] ____________________________________________________________________________________________________ bn4a_branch2a (BatchNormalizatio (None, 4, 4, 256) 1024 res4a_branch2a[0][0] ____________________________________________________________________________________________________ activation_26 (Activation) (None, 4, 4, 256) 0 bn4a_branch2a[0][0] ____________________________________________________________________________________________________ res4a_branch2b (Conv2D) (None, 4, 4, 256) 590080 activation_26[0][0] ____________________________________________________________________________________________________ bn4a_branch2b (BatchNormalizatio (None, 4, 4, 256) 1024 res4a_branch2b[0][0] ____________________________________________________________________________________________________ activation_27 (Activation) (None, 4, 4, 256) 0 bn4a_branch2b[0][0] ____________________________________________________________________________________________________ res4a_branch2c (Conv2D) (None, 4, 4, 1024) 263168 activation_27[0][0] ____________________________________________________________________________________________________ res4a_branch1 (Conv2D) (None, 4, 4, 1024) 525312 activation_25[0][0] ____________________________________________________________________________________________________ bn4a_branch2c (BatchNormalizatio (None, 4, 4, 1024) 4096 res4a_branch2c[0][0] ____________________________________________________________________________________________________ bn4a_branch1 (BatchNormalization (None, 4, 4, 1024) 4096 res4a_branch1[0][0] ____________________________________________________________________________________________________ add_9 (Add) (None, 4, 4, 1024) 0 bn4a_branch2c[0][0] bn4a_branch1[0][0] ____________________________________________________________________________________________________ activation_28 (Activation) (None, 4, 4, 1024) 0 add_9[0][0] ____________________________________________________________________________________________________ res4b_branch2a (Conv2D) (None, 4, 4, 256) 262400 activation_28[0][0] ____________________________________________________________________________________________________ bn4b_branch2a (BatchNormalizatio (None, 4, 4, 256) 1024 res4b_branch2a[0][0] ____________________________________________________________________________________________________ activation_29 (Activation) (None, 4, 4, 256) 0 bn4b_branch2a[0][0] ____________________________________________________________________________________________________ res4b_branch2b (Conv2D) (None, 4, 4, 256) 590080 activation_29[0][0] ____________________________________________________________________________________________________ bn4b_branch2b (BatchNormalizatio (None, 4, 4, 256) 1024 res4b_branch2b[0][0] ____________________________________________________________________________________________________ activation_30 (Activation) (None, 4, 4, 256) 0 bn4b_branch2b[0][0] ____________________________________________________________________________________________________ res4b_branch2c (Conv2D) (None, 4, 4, 1024) 263168 activation_30[0][0] ____________________________________________________________________________________________________ bn4b_branch2c (BatchNormalizatio (None, 4, 4, 1024) 4096 res4b_branch2c[0][0] ____________________________________________________________________________________________________ add_10 (Add) (None, 4, 4, 1024) 0 bn4b_branch2c[0][0] activation_28[0][0] ____________________________________________________________________________________________________ activation_31 (Activation) (None, 4, 4, 1024) 0 add_10[0][0] ____________________________________________________________________________________________________ res4c_branch2a (Conv2D) (None, 4, 4, 256) 262400 activation_31[0][0] ____________________________________________________________________________________________________ bn4c_branch2a (BatchNormalizatio (None, 4, 4, 256) 1024 res4c_branch2a[0][0] ____________________________________________________________________________________________________ activation_32 (Activation) (None, 4, 4, 256) 0 bn4c_branch2a[0][0] ____________________________________________________________________________________________________ res4c_branch2b (Conv2D) (None, 4, 4, 256) 590080 activation_32[0][0] ____________________________________________________________________________________________________ bn4c_branch2b (BatchNormalizatio (None, 4, 4, 256) 1024 res4c_branch2b[0][0] ____________________________________________________________________________________________________ activation_33 (Activation) (None, 4, 4, 256) 0 bn4c_branch2b[0][0] ____________________________________________________________________________________________________ res4c_branch2c (Conv2D) (None, 4, 4, 1024) 263168 activation_33[0][0] ____________________________________________________________________________________________________ bn4c_branch2c (BatchNormalizatio (None, 4, 4, 1024) 4096 res4c_branch2c[0][0] ____________________________________________________________________________________________________ add_11 (Add) (None, 4, 4, 1024) 0 bn4c_branch2c[0][0] activation_31[0][0] ____________________________________________________________________________________________________ activation_34 (Activation) (None, 4, 4, 1024) 0 add_11[0][0] ____________________________________________________________________________________________________ res4d_branch2a (Conv2D) (None, 4, 4, 256) 262400 activation_34[0][0] ____________________________________________________________________________________________________ bn4d_branch2a (BatchNormalizatio (None, 4, 4, 256) 1024 res4d_branch2a[0][0] ____________________________________________________________________________________________________ activation_35 (Activation) (None, 4, 4, 256) 0 bn4d_branch2a[0][0] ____________________________________________________________________________________________________ res4d_branch2b (Conv2D) (None, 4, 4, 256) 590080 activation_35[0][0] ____________________________________________________________________________________________________ bn4d_branch2b (BatchNormalizatio (None, 4, 4, 256) 1024 res4d_branch2b[0][0] ____________________________________________________________________________________________________ activation_36 (Activation) (None, 4, 4, 256) 0 bn4d_branch2b[0][0] ____________________________________________________________________________________________________ res4d_branch2c (Conv2D) (None, 4, 4, 1024) 263168 activation_36[0][0] ____________________________________________________________________________________________________ bn4d_branch2c (BatchNormalizatio (None, 4, 4, 1024) 4096 res4d_branch2c[0][0] ____________________________________________________________________________________________________ add_12 (Add) (None, 4, 4, 1024) 0 bn4d_branch2c[0][0] activation_34[0][0] ____________________________________________________________________________________________________ activation_37 (Activation) (None, 4, 4, 1024) 0 add_12[0][0] ____________________________________________________________________________________________________ res4e_branch2a (Conv2D) (None, 4, 4, 256) 262400 activation_37[0][0] ____________________________________________________________________________________________________ bn4e_branch2a (BatchNormalizatio (None, 4, 4, 256) 1024 res4e_branch2a[0][0] ____________________________________________________________________________________________________ activation_38 (Activation) (None, 4, 4, 256) 0 bn4e_branch2a[0][0] ____________________________________________________________________________________________________ res4e_branch2b (Conv2D) (None, 4, 4, 256) 590080 activation_38[0][0] ____________________________________________________________________________________________________ bn4e_branch2b (BatchNormalizatio (None, 4, 4, 256) 1024 res4e_branch2b[0][0] ____________________________________________________________________________________________________ activation_39 (Activation) (None, 4, 4, 256) 0 bn4e_branch2b[0][0] ____________________________________________________________________________________________________ res4e_branch2c (Conv2D) (None, 4, 4, 1024) 263168 activation_39[0][0] ____________________________________________________________________________________________________ bn4e_branch2c (BatchNormalizatio (None, 4, 4, 1024) 4096 res4e_branch2c[0][0] ____________________________________________________________________________________________________ add_13 (Add) (None, 4, 4, 1024) 0 bn4e_branch2c[0][0] activation_37[0][0] ____________________________________________________________________________________________________ activation_40 (Activation) (None, 4, 4, 1024) 0 add_13[0][0] ____________________________________________________________________________________________________ res4f_branch2a (Conv2D) (None, 4, 4, 256) 262400 activation_40[0][0] ____________________________________________________________________________________________________ bn4f_branch2a (BatchNormalizatio (None, 4, 4, 256) 1024 res4f_branch2a[0][0] ____________________________________________________________________________________________________ activation_41 (Activation) (None, 4, 4, 256) 0 bn4f_branch2a[0][0] ____________________________________________________________________________________________________ res4f_branch2b (Conv2D) (None, 4, 4, 256) 590080 activation_41[0][0] ____________________________________________________________________________________________________ bn4f_branch2b (BatchNormalizatio (None, 4, 4, 256) 1024 res4f_branch2b[0][0] ____________________________________________________________________________________________________ activation_42 (Activation) (None, 4, 4, 256) 0 bn4f_branch2b[0][0] ____________________________________________________________________________________________________ res4f_branch2c (Conv2D) (None, 4, 4, 1024) 263168 activation_42[0][0] ____________________________________________________________________________________________________ bn4f_branch2c (BatchNormalizatio (None, 4, 4, 1024) 4096 res4f_branch2c[0][0] ____________________________________________________________________________________________________ add_14 (Add) (None, 4, 4, 1024) 0 bn4f_branch2c[0][0] activation_40[0][0] ____________________________________________________________________________________________________ activation_43 (Activation) (None, 4, 4, 1024) 0 add_14[0][0] ____________________________________________________________________________________________________ res5a_branch2a (Conv2D) (None, 2, 2, 512) 524800 activation_43[0][0] ____________________________________________________________________________________________________ bn5a_branch2a (BatchNormalizatio (None, 2, 2, 512) 2048 res5a_branch2a[0][0] ____________________________________________________________________________________________________ activation_44 (Activation) (None, 2, 2, 512) 0 bn5a_branch2a[0][0] ____________________________________________________________________________________________________ res5a_branch2b (Conv2D) (None, 2, 2, 512) 2359808 activation_44[0][0] ____________________________________________________________________________________________________ bn5a_branch2b (BatchNormalizatio (None, 2, 2, 512) 2048 res5a_branch2b[0][0] ____________________________________________________________________________________________________ activation_45 (Activation) (None, 2, 2, 512) 0 bn5a_branch2b[0][0] ____________________________________________________________________________________________________ res5a_branch2c (Conv2D) (None, 2, 2, 2048) 1050624 activation_45[0][0] ____________________________________________________________________________________________________ res5a_branch1 (Conv2D) (None, 2, 2, 2048) 2099200 activation_43[0][0] ____________________________________________________________________________________________________ bn5a_branch2c (BatchNormalizatio (None, 2, 2, 2048) 8192 res5a_branch2c[0][0] ____________________________________________________________________________________________________ bn5a_branch1 (BatchNormalization (None, 2, 2, 2048) 8192 res5a_branch1[0][0] ____________________________________________________________________________________________________ add_15 (Add) (None, 2, 2, 2048) 0 bn5a_branch2c[0][0] bn5a_branch1[0][0] ____________________________________________________________________________________________________ activation_46 (Activation) (None, 2, 2, 2048) 0 add_15[0][0] ____________________________________________________________________________________________________ res5b_branch2a (Conv2D) (None, 2, 2, 512) 1049088 activation_46[0][0] ____________________________________________________________________________________________________ bn5b_branch2a (BatchNormalizatio (None, 2, 2, 512) 2048 res5b_branch2a[0][0] ____________________________________________________________________________________________________ activation_47 (Activation) (None, 2, 2, 512) 0 bn5b_branch2a[0][0] ____________________________________________________________________________________________________ res5b_branch2b (Conv2D) (None, 2, 2, 512) 2359808 activation_47[0][0] ____________________________________________________________________________________________________ bn5b_branch2b (BatchNormalizatio (None, 2, 2, 512) 2048 res5b_branch2b[0][0] ____________________________________________________________________________________________________ activation_48 (Activation) (None, 2, 2, 512) 0 bn5b_branch2b[0][0] ____________________________________________________________________________________________________ res5b_branch2c (Conv2D) (None, 2, 2, 2048) 1050624 activation_48[0][0] ____________________________________________________________________________________________________ bn5b_branch2c (BatchNormalizatio (None, 2, 2, 2048) 8192 res5b_branch2c[0][0] ____________________________________________________________________________________________________ add_16 (Add) (None, 2, 2, 2048) 0 bn5b_branch2c[0][0] activation_46[0][0] ____________________________________________________________________________________________________ activation_49 (Activation) (None, 2, 2, 2048) 0 add_16[0][0] ____________________________________________________________________________________________________ res5c_branch2a (Conv2D) (None, 2, 2, 512) 1049088 activation_49[0][0] ____________________________________________________________________________________________________ bn5c_branch2a (BatchNormalizatio (None, 2, 2, 512) 2048 res5c_branch2a[0][0] ____________________________________________________________________________________________________ activation_50 (Activation) (None, 2, 2, 512) 0 bn5c_branch2a[0][0] ____________________________________________________________________________________________________ res5c_branch2b (Conv2D) (None, 2, 2, 512) 2359808 activation_50[0][0] ____________________________________________________________________________________________________ bn5c_branch2b (BatchNormalizatio (None, 2, 2, 512) 2048 res5c_branch2b[0][0] ____________________________________________________________________________________________________ activation_51 (Activation) (None, 2, 2, 512) 0 bn5c_branch2b[0][0] ____________________________________________________________________________________________________ res5c_branch2c (Conv2D) (None, 2, 2, 2048) 1050624 activation_51[0][0] ____________________________________________________________________________________________________ bn5c_branch2c (BatchNormalizatio (None, 2, 2, 2048) 8192 res5c_branch2c[0][0] ____________________________________________________________________________________________________ add_17 (Add) (None, 2, 2, 2048) 0 bn5c_branch2c[0][0] activation_49[0][0] ____________________________________________________________________________________________________ activation_52 (Activation) (None, 2, 2, 2048) 0 add_17[0][0] ____________________________________________________________________________________________________ avg_pool (AveragePooling2D) (None, 1, 1, 2048) 0 activation_52[0][0] ____________________________________________________________________________________________________ flatten_1 (Flatten) (None, 2048) 0 avg_pool[0][0] ____________________________________________________________________________________________________ fc6 (Dense) (None, 6) 12294 flatten_1[0][0] ==================================================================================================== Total params: 23,600,006 Trainable params: 23,546,886 Non-trainable params: 53,120 ____________________________________________________________________________________________________
Finally, run the code below to visualize your ResNet50. You can also download a .png picture of your model by going to "File -> Open...-> model.png".
plot_model(model, to_file='model.png')
SVG(model_to_dot(model).create(prog='dot', format='svg'))
This notebook presents the ResNet algorithm due to He et al. (2015). The implementation here also took significant inspiration and follows the structure given in the GitHub repository of Francois Chollet: